Multifunctional Structures and Materials: the Ultimate Biomimicry

1st Annual National
Biomimicry Summit and Education Forum for Aerospace
in collaboration with NASA

3 August 2016

Dr. Paul Kladitis Leader, Multifunctional Products Group

Multi-Scale Composites & Polymers Division University of Dayton Research Institute paul.kladitis@udri.udayton.edu

Overview

- Multifunctional structures and materials
- The more conspicuous examples of biomimicry are superficial
- Multifunctionality is a significant fundamental trait of the biorealm
 - Examples
- Multifunctional structures are the ultimate biomimicry
 - Not so popular why?
- Application Example
 - Conductive Plastic & Additive Manufacturing

Definition

Multifunctionality

- Imparting one or more necessary system functions to components of a system that are typically only passive mechanical structures
 - Without negatively impacting strength and weight properties
- Eliminates the need for discrete components required to perform the same function
- Results in minimized system SWaP and design/manufacturing complexity, and opportunity for additional payload (function)
- Multifunctional Structures
 - A physical structure with multifunctionality
- Multifunctional Materials
 - A material can either be viewed as a structure itself or a component which enables multifunctionality in structures

Multifunctional Structures and Materials

Mechanical Suitability at Minimum Weight +

High electrical conductivity Low loss High power handling

signal, RF, power

Impact resistance Self-Healing

- · weapons
- space debris
- construction handling

Low thermal expansion

· antennas, optics, structures

> E³ management Radiation hardness

- enclosures, hulls
- RF cables

RF/EO Management

- · high energy protection
- · energetic enhancement
- · hulls, survivability, other

Fatigue resistance Cold welding resistance

· gimbal wiring, small radii bends, structures

High thermal radiation Low heat capacity

radiators

Customizable thermal conductivity

- thermal straps
- insulation

Low reflectivity

stray light management

Mechanical damping High stiffness

 enclosures, structures, bays, boxes, isolation

High Ops Temperature

structures, engines

Integrated Electronics

- · smart structures
- antennae
- heaters

Disruptive Technology

Energy Storage/Generation

· power scavenging

structural batteries/capacitors

= Reduced size, weight, power, design/manufacturing complexity shaping the technology of tomorrow®

Multifunctional Products Group

Mission

 Enabling new applications through developing and integrating new and conventional materials into multifunctional composites and materials for reducing size, weight, energy consumption, and manufacturing complexity; and increasing performance, ruggedness, and survivability

The "Veneer" of Biomimicry

Flies Like a Bird
(UMD/ARL Robo Raven)

(USN GhostSwimmer)

Multifunctionality Underneath the Veneer

- In order for a system to:
 - Fly like a bird
 - Walk like a mule
 - Swim like a fish
 - Move like a bug

Posses self-sustaining autonomy

Multifunctional structures and materials must <u>pervade</u> the system

.... possibly with no exceptions

With Multifunctionality

Without Multifunctionality

- The Human Body
 - Bones
 - Scaffolding/Frame
 - Impact shielding
 - Chemical synthesis (blood cell production...)
 - Chemical storage
 - Self repair
 - Information transfer

R. Dulbecco, *Encyclopedia of Human Biology*, 2nd ed. La Jolla, CA: Academic Press, 1997.

The Human Body

- Muscles
 - Mechanical actuation (many purposes)
 - Mechanical stabilization
 - Cushion
 - Heat generation
 - Chemical processing
 - Aesthetics
 - Self repair
 - Information transfer

- R. Dulbecco, *Encyclopedia of Human Biology,* 2nd ed. La Jolla, CA: Academic Press, 1997.
- C. van der Poel, P. Levinger, B.A. Tonkin, I. Levinger, and N.C. Walsh, "Impaired muscle function in a mouse surgical model of post-traumatic Osteoarthritis," *Osteoarthritis and Cartilage*, Vol. 24, No. 6, pp. 1047–1053, June 2016.

shaping the technology of tomorrow®

- The Human Body
 - Arteries and Veins
 - Hydraulic containment
 - Active flow control
 - Self repair
 - Information transfer
 - Organs: Liver
 - Chemical production
 - Chemical storage
 - Chemical synthesis
 - Self repair
 - Information transfer

- R. Dulbecco, *Encyclopedia of Human Biology*, 2nd ed. La Jolla, CA: Academic Press, 1997.
- F. Helle, T.D. Dahl, and C. Chatziantoniou, "A Low-Cost, Scalable Technique to Study Distal Coronary Arteriole Function," Acta Physiologica, Vol. 211, No. 2, pp. 260-267, June 2014.

- The Human Body
 - Skin
 - Mechanical cover
 - Radiation shielding
 - Chemical-Bio shielding
 - Filter
 - Chemical synthesis
 - Thermal management
 - Aesthetics
 - Self repair
 - Information transfer

- R. Dulbecco, Encyclopedia of Human Biology, 2nd ed. La Jolla, CA: Academic Press, 1997.
- A. L. S. Chang, J. W. Wong, J. O. Endo, and R. A. Norman, "Geriatric Dermatology Review: Major Changes in Skin Function in Older Patients and Their Contribution to Common Clinical Challenges," Journal of the American Medical Directors Association, Vol. 14, pp. 724-730, October 2013.

- The Human Body
 - Fat
 - Mechanical cushion
 - Thermal insulation & shielding
 - Energy storage
 - Nutrient storage
 - Aesthetics
 - Chemical production
 - Information transfer

- R. Dulbecco, *Encyclopedia of Human Biology*, 2nd ed. La Jolla, CA: Academic Press, 1997.
- K.J. Suchacki, W.P. Cawthorn, and C.J. Rosen, "Bone Marrow Adipose Tissue: Formation, Function, and Regulation," Musculoskeletal, Current Opinion in Pharmacology, Vol. 28, pp. 50-56, June 2016.

Multifunctional Structures in Nature

So

- Nature has the most optimum system designs
- HIGHLY Multifunctional Structures and Materials proliferate these natural systems
- Multifunctional Structures enable the conspicuous traits we admire and mimic
- Enabling <u>Multifunction Material</u> to "mimic" may be Carbon

Therefore

To go even further in the area of biomimicry, we should make development of multifunctional structures and materials <u>TOP PRIORITY</u>

Challenges to Multifunctionality

- Design_(verb) Complexity
 - More difficult to think about engineers are lazy
- Maintainability Requirements
 - Maintenance nightmare until self-healing is realized
- Manufacturability
 - Manufacturing infrastructure not yet suited for this based on singular/serial components/functions
- Short Term Gain
 - Not as sexy as the veneer functions
 - Needs more development
- Cost
 - Development, Maintenance, Industrial Capital, etc.

- What multifunctionality should be pursued first with most potential for impact?
 - Integrated electronics
- What parallel bottoms-up manufacturing technique would be most amenable to make a highly integrated multifunctional structure?
 - Additive Manufacturing

Conductive Thermoplastic + Fused Deposition Modelling (FDM)

- New thermoplastics enable multifunctional FDM structures
- World's first FDM printed wire connectors, CNT wires, wire harnesses, and other structures
 - Space qualified and flying now
- Two material printing of Conductive & Nonconductive Thermoplastics (conductor & insulator)
 - Enables all passive electrical circuit elements
 - Enables functions only requiring passive elements

- Passive elements are not enough for full electrical function What is still missing are
 - p-n junction: enables diode, varactor, and transistors
 - rectification, variable capacitor, amplification, switching
 - battery: enables power supply

p-n junction is the heart of transistor action

Summary

- Multifunctional structures and materials
- The more conspicuous examples of biomimicry are superficial
- Multifunctionality is a significant fundamental trait of the biorealm
- Multifunctional structures are the ultimate biomimicry
 - Should be top priority
- Challenges
- Integrated Electronics
 - Conductive Plastic & Additive Manufacturing

We Are...

Flexible

Responsive

Agile

Solution Driven

Research & Engineering Innovative Leaders Customer Focused

Objective

Value Oriented

www.udri.udayton.edu